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1 Introduction

Why do we categorise two objects (e.g., a pear and a banana) as instances of the
same concept (e.g., the concept fruit), despite their perceptual differences? This
is the two-step decision problem of perceptual categorisation (PC). Accordingly,
the first step is to infer the ‘correct’ concept (e.g., fruit, as opposed to edible)
that subsumes each object. The second step is to decide whether the second
object falls under the same or a different concept1

I argue that Bayesian modelling [6, 8] combined with the Conceptual Spaces
framework of knowledge representation [3] provides an optimal solution to the
problem of PC. Bayesian modelling of PC offers an elegant approach to the
rationality of PC, but it implicitly relies on an account of psychological similarity
representations.

2 Bayesian modelling of PC

On the Bayesian approach, PC is a rational inference task that involves a set of
countable, possibly infinite, and mutually exclusive hypotheses, h1, . . . , hn, . . . ∈
H. Each hypothesis pairs a given set of stimuli, x1, x2, ..., xn, with a concept, C.
H defines a probability distribution, pr : h → [0, 1]. The assignment of probabil-
ities to hypotheses is conditional on the given evidence, e : x1, ..., xn. To model
the agent’s degree of belief in h after observing e, we use Bayes’ theorem:

pr(h|e) =
pr(e|h)pr(h)∑

h′∈H pr(e|h′)pr(h′)
,

1 One reason to characterise PC as a two-step problem is that some agents seem
to generalise behaviour on the basis of nonconceptual contents [2]. On this basis,
inferring the concept and generalising a response are logically independent steps.
The Bayesian approach that I consider rests on the assumption that the first step is
involved.



2 Nina Poth

where the posterior probability, pr(h|e), is a function of the product of the
likelihood, pr(e|h), and prior, pr(h). This is taken relative to the sum of the
products of likelihoods and priors for all alternative hypotheses, h

′ ∈ H. The
likelihood represents how probable it is to observe e, given h was true. The prior
represents the probability of h regardless of e.

A partial answer to the first step (of inferring the correct C that subsumes
x) is given in Brössel’s (2017) recent account of the rational relations between
colour perception and beliefs about colour, in which the correct C is that which
covers x in conceptual space.

To answer the second step, we need to determine under what conditions
it would be correct for the agent to treat y like x. I evaluate two plausible
generalisation policies: Shepard’s (1987) weak sampling policy and T&G’s (2001)
strong sampling policy. On weak sampling, the extent to which agent S should
treat y like x depends fully on whether or not y falls under the same concept
as x (i.e., an all-or-none policy). Under strong sampling, it depends on the size
principle: agents should assign greater probabilities to hypotheses that pair x
and y each with a small concept (see [5, pp. 306-307] for an illustration).

Strong sampling seems preferable to model linguistic communication because
it allows for hypothesis selection when multiple hypotheses are compatible with
the evidence [4]. For example, it explains why a pear and a tomato are relatively
unlikely to fall under the same concept. A hypothesis citing fruit will be better
confirmed than a hypothesis citing edible for an encounter of the pear. Likewise,
a hypothesis citing vegetable will be more probable than hypotheses citing
edible for an encounter of the tomato. Consequently, it is more likely that the
pear and the tomato will be treated differently because their preferred concepts
(fruit vs. vegetable) are distinct. This is so even if they both fall under
edible (which is all that would count in weak sampling). Furthermore, strong
sampling can account for efficient learning, as only a few examples are needed
to confirm such hypotheses [8].

However, Bayesian modelling leaves important questions unanswered. Firstly,
neither weak nor strong sampling provide an account of concept individuation.
So what determines whether the instances belong to the same or to different con-
cepts? Secondly, why are smaller hypotheses better confirmed by the examples
than larger hypotheses? Thirdly, which hypotheses are a priori (im)plausible?
For example, in Goodman’s (1955) classical riddle of induction, all Emeralds
observed to be green fall under green but also under grue. Still, green is
preferable because it is more natural. Just considering the size of hypotheses
cannot account for this intuition, since these concepts seem to have the same
size. I argue that Conceptual Spaces provides possible answers to these questions.

3 Conceptual Spaces and knowledge representation

Conceptual Spaces structures knowledge representations based on similarity re-
lationships; similarity is a monotonically decreasing function of distance in a
geometric space that is endowed with dimensions that represent perceptual qual-
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ities such as tastes or colours [3]. An instance is a vector in this space. A concept
is a region in this space, and its area represents the concept’s intension. This is
the average dissimilarity among possible instances of the concept. For example,
instances of pears and instances of bananas both fall inside the fruit region.
However, those pears that fall inside the red portion of the colour domain will
be less similar to bananas than those pears that fall inside the yellow portion.
Conceptual Spaces relates the evidence to hypotheses in virtue of the relative
positions among points and regions. Therefore, what determines whether the
instances belong to the same concept is how close they are in psychological
similarity space.

On this basis, we can explain why smaller hypotheses are better confirmed
by the examples than larger hypotheses. Roughly, smaller concepts allow for
fewer variations in the outcomes of a random sampling experiment. If we ob-
serve a sample with a small variation of outcomes, this observation is likely to
be a consequence of a small concept. Correspondingly, the confirmatory relations
between instances and probabilistic hypotheses reduce to the overlap between
concepts and the areas covered by their instances. Among those concepts that
subsume the available evidence, the possibilities provided by smaller concepts
(e.g., fruit) will overlap more closely with the actual examples than those pro-
vided by larger concepts (e.g., edible).

Finally, the structure of the space constrains the prior selection of hypotheses.
Both [6] and [3] assume that natural concepts are convex regions. Alternatively,
[7] argues that especially complex concepts are natural to the extent that they are
characteristic for instances that fall under them. In either case, the topological
structure of the space rejects many concepts a priori, making Bayesian modelling
of PC more psychologically plausible.
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