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How can we model conceptual reasoning in a way which is formal and yet
reflects the fluidity of concept use in human cognition? One answer to this ques-
tion is given by Peter Gärdenfors’ framework of conceptual spaces [5, 6], in which
domains of conceptual reasoning are modelled by mathematical spaces and con-
cepts are described geometrically, typically as convex regions. Many authors
have given their own formalisations of this framework, e.g. [1, 9, 2].

A notable aspect of the conceptual space framework is that it is compo-
sitional in the sense that each overall conceptual space is given by composing
various simpler domains (e.g. colour, sound, taste). A highly successful approach
to formalising such compositional theories of semantics is through the use of cat-
egory theory, and particularly monoidal categories, as are used for example in
the DisCoCat framework for NLP [4].

Bolt et al. [3] have presented such a categorical formalisation of conceptual
spaces using the category of convex relations, with conceptual spaces modelled
as convex algebras and concepts as convex subsets. The model demonstrates the
naturality of monoidal categories for modelling the composition of domains, and
for describing correlations between domains within concepts.

However, like most formalisations, the model of [3] is limited to describing
only what we may call crisp concepts, which are such that any entity either
strictly is or is not a member. In contrast, the cognitive science literature ac-
knowledges that concepts should be fuzzy in that for each concept C the degree
of membership of an entity x should form a scalar value C(x) ∈ [0, 1]. For exam-
ple, Gärdenfors suggests defining membership based on distance from a central
prototypical region [6]. A recent formalisation of conceptual spaces which does
treat fuzziness from the outset is that of Bechberger and Kühnberger [2].

In this work we propose a compositionally well-behaved formalisation of fuzzy
concepts, as log-concave functions C : X → [0, 1]. We prove that these are essen-
tially the smallest class of functions which are closed compositionally and which
satisfy the criterion of quasi-concavity, identified implicitly by Gärdenfors.

Furthermore we specify a symmetric monoidal category LCon whose objects
are conceptual spaces and morphisms are suitable probabilistic conceptual map-
pings between them, with fuzzy concepts as a special case. Thus we extend the
model of Bolt et al. [3] from crisp to fuzzy concepts. This situates our category
as a model of fuzzy conceptual spaces within the DisCoCat framework for NLP
[4].
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Fuzzy Concepts

In this work, we follow a simple model of a conceptual space as a convex space,
namely a setX in which we may take convex combinations

∑n
i=1 pixi of elements,

and which comes with a σ-algebra ΣX , allowing us apply the tools of probability
theory. A crisp concept of X is then a (measurable) subset A ⊆ X which is
convex, meaning it is closed under convex combinations.

More general fuzzy concepts should form certain maps C : X → [0, 1]. Gärdenfors
implicitly proposes in [6] that fuzzy concepts should satisfy quasi-concavity :

C(p · x+ (1− p)y) ≥ min{C(x), C(y)}

This means that any point ‘between’ x and y is at least as much an instance of
the concept C as they both are. However, such functions are in general not closed
compositionally, i.e. under products, and so we will require further criteria.

We define a fuzzy concept on X to be a measurable map C : X → [0, 1] which
is log-concave, meaning that for all x, y ∈ X and p ∈ [0, 1] we have

C(x+p y) ≥ C(x)pC(y)1−p

Log-concave functions are well-studied in economics, statistics and measure the-
ory, and include many common statistical functions [10]. Crucially they contain
every crisp concept A via its indicator function C = 1A, every function which is
affine, meaning that C(

∑
pixi) =

∑
i piC(xi), and every multi-variate Gaussian

function. In a metric space, the latter allows us to naturally model fuzzy con-
cepts with value inversely proportional to distance from some given prototypical
convex region A, given by C(x) = λd(x,A)n for λ ≥ 1, n ∈ N.

Our definition is justified by the following result. It tells us that if we wish
fuzzy concepts to be quasi-concave, compositionally well-behaved, and contain
a few basic examples, then log-concavity is necessary.

Theorem 1. Log-concave functions are the broadest class of quasi-concave func-
tions X → [0, 1] on each space X, which together are closed under products and
contain all affine maps (and/or exponential maps).

Fuzzy Conceptual Processes

We now wish to extend our definition to formalisation a notion of fuzzy con-
ceptual mapping f : X → Y between conceptual spaces. Examples of mappings
include reasoning processes on spaces, and metaphors or analogies, which may
be viewed as mappings between distinct domains.

The fuzzy setting suggests we begin from the standard notion of a probabilis-
tic map, namely a Markov kernel or channel f : X → Y , which sends each x ∈ X
to a (sub)-probability measure f(x) over Y , the general mathematical definition
of a probability distribution. We say that a channel f : X → Y is log-concave,
or a conceptual channel, when it satisfies

f(px+ (1− p)y, pA+ (1− p)B) ≥ f(x,A)pf(y,B)1−p (1)
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for all x, y ∈ X, p ∈ [0, 1] and convex measurable A,B ⊆ Y .
Let I be the trivial space. As special cases, a conceptual channel I → X is

essentially a log-concave measure on X [8], and models a probabilistic or ‘noisy’
state of X. These include many standard distributions such as Gaussians, point
and uniform distributions. A conceptual channel X → I (called an effect) is a
fuzzy concept on X, and more general channels are transformations of these.

Our main technical result is that such channels are compositionally well-
behaved, forming a symmetric monoidal category LCon. This allows us to use
them as a model of natural language in the DisCoCat framework, giving a fuzzy
conceptual meaning to a sentence whose individual words are given meanings as
fuzzy concepts. [4]. Moreover, this category is in a sense canonical, assuming a
mild measure-theoretic condition on our convex spaces.

Theorem 2. Log-concave channels form a symmetric monoidal category LCon.
Moreover any other symmetric monoidal category C of ‘well-behaved’ spaces and
channels whose effects are quasi-concave and contains crisp concepts and affine
functions has an embedding C ↪→ LCon.

Future Work Our work has established a theoretical foundation for the compo-
sitional study of fuzzy concepts on convex spaces. In future we hope to explore
the usefulness of this as model for probabilistic and fuzzy conceptual reasoning,
in both NLP and AI. In particular, the fact that the category LCon allows us
to model reasoning with noisy (probabilistic) inputs should make it applicable
to modern neural net systems which use such noisy inputs, such as β-VAEs [7].
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