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The background of this paper is educational research. I am teaching an introductory
mathematics class to first-year computer science students which employs a variety of
contemporary teaching methods (interactive engagement, flipped-classroom, automat-
ically evaluated interactive exercises and so on). Nevertheless 15-30% of the students
still fail the class. According to [2], students find the transition from school- to expert-
level competence of mathematics difficult because it encompasses a shift from mas-
tering standardised procedures to employing mathematical concepts and mathematical
thinking. Or, in other words, a shift from calculating to modelling and comprehension.

In other disciplines, concept inventories (Cls) present a pedagogical instrument for
measuring conceptual learning of core concepts in form of standardised questionnaires'.
Final exams assess some mathematical competencies, such as calculating or program-
ming. But expert competencies, such as developing proofs or modelling complex appli-
cations may be too challenging for first-year students and are more difficult to assess in
exams. Physics education research has shown that students may be able to pass exams
by applying procedural problem solving strategies without actually understanding the
core concepts of the subject matter [6]. For example, combinatorial problems can be
solved by determining which type a problem belongs to and then applying a formula
without any deeper understanding. Such procedural skills are undoubtedly part of math-
ematical expertise but not the only component. Students also need to acquire conceptual
understanding and further skills. CIs provide a means for measuring conceptual devel-
opment by comparing the students’ answers on a pretest before the semester with their
answers on a posttest at the end. But in mathematics, Cls are not readily available [6].

ClIs for introductory physics are successful partly because many relevant concepts
can be expressed in natural language (e.g. force, speed, temperature and distance). A
CI then detects misconceptions where everyday assumptions are incorrectly applied to
scientific concepts. Attempts have been made to also provide Cls for computing and
mathematics but ClIs appear to be more elusive in those domains [6]. A suitable list
of CI concepts is more difficult to obtain because of the rapidly changing nature of
computing topics, more disagreement about which topics to select and more reliance on
terminology and formalisms which cannot be expressed in natural language and thus
be evaluated independently of the students’ prior educational backgrounds [6]. This
paper argues that the difficulties of creating a CI for mathematics may be overcome if
instead of focusing on mathematical content, the emphasis is placed on reasoning and

! A concept in a CI is expressed through multiple choice questions where a true statement about
a concept is contrasted with distractors expressing common misconceptions.
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the nature and purpose of mathematics. Moore [4] considers perceptions of the nature of
proofs and expertise in logic and proof methods as some of the main problem areas for
first-year university students (alongside problem-solving skills, learning mathematical
language and understanding concepts). These skills pertain to all mathematical topics
and, in particular, reasoning ability presents a skill that is (or should) also be present in
everyday activities.

Therefore, this paper proposes two foundational concepts for a CI for introductory
mathematics: (C1) an understanding of the nature of mathematical concepts and (C2)
an understanding of how to establish truth (reflecting the role of proofs). Because C1
and C2 do not represent mathematical content but belong to a metalevel, it may be
easier to obtain a consensus about them amongst mathematics teachers. Evidence for
misconceptions that students have about C1 and C2 is provided by their behaviour: not
seeing definitions and theorems as the main reference points for mathematical prob-
lems, expressing inappropriate intuitive explanations for mathematical concepts and
not appreciating the value of proofs and correct logical reasoning (cf. [1] and [4]). Ac-
cording to Priss [5], strong contributing factors for C1 are: not perceiving mathematical
concepts as formal (i.e. with precise extension and intension), abstract (i.e. entirely em-
bedded within mathematics without reference to an external reality) and semiotically
anonymous (i.e. independent of the exact vocabulary and formulas used because many
equivalent definitions may exist for a concept). Consequently, subconcepts of C1 can
be formulated as: C1.1 the role of definitions, C1.2 identifying properties of concepts
(especially rule-based properties that cannot be intuitively imagined), C1.3 identifying
extensions of concepts (and not confounding concepts with their prototypical exam-
ples), C1.4 understanding equivalence (for example of definitions).

Subconcepts of C2 pertain to the role and nature of proofs. A variety of different
types of proofs is usually explicitly taught to students who major in mathematics. But
at least at some tertiary institutions, mathematics for computing students is not taught
using the traditional sequence of definitions, theorems and proofs. In that case only
“easy” proofs are included, more difficult ones are omitted or replaced by explanations.
It would be an interesting question to compare the impact of a teaching style with or
without proofs. But Moore’s [4] observations appear to indicate that even including
proofs in the teaching material does not guarantee that students develop a desirable
perception of proofs and proof skills. Nevertheless, independently of how mathematics
is taught, there is an expectation that students should acquire reasoning skills. Sub-
concepts of C2 could be formulated corresponding to different types of proofs. But
focusing on the metalevel, the following subconcepts are proposed in this paper: C2.1
logical soundness of proofs (excluding, for example, incomplete induction or abduc-
tion), C2.2 proofs as solely logical (and not, for example, causal) and independent of
psychological and emotional factors (because intuition, comprehension and belief are
neither necessary nor sufficient conditions for determining truth).

The concept C2 also raises philosophical questions. In primary and secondary edu-
cation, mathematics is usually taught by encouraging a development of mental concept
images which highlight connections between mathematical formalisms and everyday
experience. But in tertiary education, mathematics is presented as a formal system that
is entirely founded in logic. Contemporary educational theories tend to be based on
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a constructivist philosophy which emphasises the consensual mental construction of
mathematical concepts as explanatory models of sensory experience. A Peircean prag-
matist philosophy, however, which agrees with consensual mental construction insists
also that truth can only be established by applying a scientific method of inquiry to
concepts that are grounded in reality (even though in the domain of mathematics the re-
ality solely consists of definitions). Therefore, from a pragmatist viewpoint two further
subconcepts of C2 can be formulated as C2.3 the fallibility of truth and C2.4 the estab-
lishment of truth by a scientific community of inquiry. A single person writing a proof
may not be sufficient for establishing truth because a scientific community still needs
to re-evaluate and check any proofs developed by individuals. A community that does
not adhere to scientific inquiry, for example a social networking community, is equally
insufficient. While some mathematicians might oppose a pragmatist approach, a simple
example of a community of inquiry consists of students that are reporting errors that
occasionally occur even in textbooks and other class materials.

A CI for mathematics could then continue with non-metalevel concepts. According
to Lakoff & Johnson [3], mathematical concepts often model some everyday experi-
ence, such as counting, measuring, two-dimensional representations, ordering, arrang-
ing, structuring and so on. Many of these can be expressed in natural language. Mainly
relevant to introductory mathematics are questions about the precision and absolute-
ness of mathematical structures, the purpose of modelling, questions relating to empti-
ness, equivalence, equality, infinity, limits, combinatorial counting, logical reasoning
involving implication, counter examples and quantifiers and, last but not least, a list of
different types of proofs.

I suspect, however, that C1 and C2 and their subconcepts may be more important
than any of the other possible concepts because as metalevel concepts they are relevant
for all mathematical activity. Therefore I am currently in the process of developing a
CI for C1 and C2 which I hope to test and evaluate during the next semester. I would
present more details about the development at the workshop.
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